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Affine vertex algebras

Let V k(g) be universal affine vertex algebra of level k associated to
the affine Lie algebra ĝ.

V k(g) is generated generated by the fields x(z) =
∑

n∈Z x(n)z−n−1,
x ∈ g.

As a ĝ–module, V k(g) can be realized as a generalized Verma
module.

For every k ∈ C, the irreducible ĝ–module Lk(g) carries the
structure of a simple vertex algebra.
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Affine Lie algebra A
(1)
1

Let now g = sl2(C)

with generators e, f , h

and relations [h, e] = 2e, [h, f ] = −2f , [e, f ] = h.

The corresponding affine Lie algebra ĝ is of type A
(1)
1 .

The level k = −2 is called critical level.

For x ∈ sl2 identify x with x(−1)1. Let Θ be the automorphism of
V k(sl2) such that

Θ(e) = f , Θ(f ) = e, Θ(h) = −h.
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Affine Lie algebra A
(1)
1 in principal graduation

Let ŝl2[Θ] be the affine Lie algebra ŝl2 in principal graduation

[Lepowsky-Wilson]. ŝl2[Θ] has basis:

{K , h(m), x+(n), x−(p) |m, p ∈ 1
2 + Z, n ∈ Z}

with commutation relations:

[h(m), h(n)] = 2mδm+n,0K

[h(m), x+(r)] = 2x−(m + r)

[h(m), x−(n)] = 2x+(m + n)

[x+(r), x+(s)] = 2rδr+s,0K

[x+(r), x−(m)] = −2h(m + r)

[x−(m), x−(n)] = −2mδm+n,0K

K in the center

Proposition. (FLM)

The category of Θ–twisted V k(sl2)–modules coincides with the category

of restricted modules for ŝl2[Θ] of level k .
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N = 2 superconformal algebra

N = 2 superconformal algebra (SCA) is the infinite-dimensional Lie
superalgebra with basis L(n),H(n),G±(r),C , n ∈ Z, r ∈ 1

2 + Z and
(anti)commutation relations given by

[L(m),L(n)] = (m − n)L(m + n) + C
12

(m3 −m)δm+n,0,

[H(m),H(n)] = C
3
mδm+n,0, [L(m),G±(r)] = ( 1

2
m − r)G±(m + r),

[L(m),H(n)] = −nH(n + m), [H(m),G±(r)] = ±G±(m + r),

{G+(r),G−(s)} = 2L(r + s) + (r − s)H(r + s) + C
3

(r 2 − 1
4
)δr+s,0,

[L(m),C ] = [H(n),C ] = [G±(r),C ] = 0,

{G+(r),G+(s)} = {G−(r),G−(s)} = 0

for all m, n ∈ Z, r , s ∈ 1
2 + Z.

Let V N=2
c be the universal N = 2 superconformal vertex algebra.
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N = 2 superconformal algebra

N = 2 superconformal algebra (SCA) admits the mirror map
automorphism (terminology of K. Barron):

κ : G±(r) 7→ G∓(r), H(m) 7→ −H(m), L(m) 7→ L(m), C 7→ C

which can be lifted to an automorphism of V N=2
c .

Proposition. (K. Barron, ..)

The category of κ–twisted V N=2
c –modules coincides with the category of

restricted modules for the mirror twisted N = 2 superconformal algebra
of central charge c .
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Correspondence

When k 6= −2, the representation theory of the affine Lie algebra

A
(1)
1 is related with the representation theory of the N = 2

superconformal algebra.

The correspondence is given by Kazama-Suzuki mappings.

We shall extend this correspondence to representations at the critical
level by introducing a new infinite-dimensional Lie superalgebra A.
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Vertex superalgebras F and F−1

The Clifford vertex superalgebra F is generated by fields
Ψ±(z) =

∑
n∈Z Ψ±(n + 1

2 )z−n−1,

whose components satisfy the (anti)commutation relations for the
infinite dimensional Clifford algebra CL:

{Ψ±(r),Ψ∓(s)} = δr+s,0; {Ψ±(r),Ψ±(s)} = 0 (r , s ∈ 1
2

+ Z).

Let F−1 = M(1)⊗C[L] be the lattice vertex superalgebra associated
to the lattice

L = Zβ, 〈β, β〉 = −1.

Dražen Adamović Explicit realization of affine vertex algebras and their applications



Notre Dame 2015

Vertex superalgebras F and F−1

Let ΘF be automorphism of order two of F lifted from the
automorphism Ψ±(r) 7→ Ψ∓(r) of the Clifford algebra.

F has two inequivalent irreducible ΘF–twisted modules FTi .

Let ΘF−1 be the automorphism of F−1–lifted from the automorphism
β 7→ −β of the lattice L.

F−1 has two inequivalent irreducible ΘF−1 –twisted modules FTi
−1

realized on
M

Z+
1
2

(1) = C[β(− 1
2 ), β(− 3

2 ), . . . ].
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N = 2 superconformal vertex algebra

Let g = sl2. Consider the vertex superalgebra V k(g)⊗ F . Define

τ+ = e(−1)⊗Ψ+(− 1
2 ), τ− = f (−1)⊗Ψ−(− 1

2 ).

Then the vertex subalgebra of V k(g)⊗ F

generated by τ+ and τ− carries the structure of a highest weight
module for of the N = 2 SCA:

G±(z) =
√

2
k+2Y (τ±, z) =

∑
n∈Z G±(n + 1

2 )z−n−2
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Kazama-Suzuki and ”anti” Kazama-Suzuki mappings

Introduced by Fegin, Semikhatov and Tipunin (1997)

Assume that M is a (weak ) V k(g)-module. Then M ⊗ F is a
(weak) V N=2

c –module with c = 3k/(k + 2).

Assume that N is a weak V N=2
c –module. Then N ⊗ F−1 is a (weak )

V k(sl2)–module.

This enables a classification of irreducible modules for simple vertex
superalgebras associated to N=2 SCA (D.Adamović, IMRN (1998) )
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Kazama-Suzuki and ”anti” Kazama-Suzuki mappings:
twisted version

Let c = 3k/(k + 2).

Assume that M tw is a Θ–twisted V k(g)-module. Then M tw ⊗ FTi is
a κ–twisted V N=2

c –module.

Assume that N tw is a κ–twisted V N=2
c –module. Then N tw ⊗ FTi

−1 is

a Θ–twisted V k(g)–module.
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Lie superalgebra A

A is infinite-dimensional Lie superalgebra with generators
S(n),T (n),G±(r),C , n ∈ Z, r ∈ 1

2 + Z, which satisfy the following
relations

S(n),T (n),C are in the center of A,
{G+(r),G−(s)} = 2S(r + s) + (r − s)T (r + s) + C

3 (r2 − 1
4 )δr+s,0,

{G+(r),G+(s)} = {G−(r),G−(s)} = 0

for all n ∈ Z, r , s ∈ 1
2 + Z.
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The (universal) vertex algebra V

V is strongly generated by the fields

G±(z) = Y (τ±, z) =
∑
n∈Z

G±(n + 1
2 )z−n−2,

S(z) = Y (ν, z) =
∑
n∈Z

S(n)z−n−2,

T (z) = Y (j , z) =
∑
n∈Z

T (n)z−n−1.

The components of these fields satisfy the (anti)commutation
relations for the Lie superalgebra A.

Let ΘV be the automorphism of V lifted from the automorphism of
order two of A such that

G±(r) 7→ G∓(r), T (r) 7→ −T (r), S(r) 7→ S(r),C 7→ C .
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Lie superalgebra Atw

Atw has the basis

S(n), T (n + 1/2), G(r), C , n ∈ Z, r ∈ 1
2Z

and anti-commutation relations:

{G(r),G(s)} = (−1)2r+1(2δZr+sS(r+s)−δ
1
2 +Z
r+s (r−s)Tr+s+C

3 δ
Z
r+s(r2− 1

4 ) δr+s,0),

S(n), T (n + 1/2),C in the center,

with δSm = 1 if m ∈ S , δSm = 0 otherwise.

Proposition.

The category of ΘV–twisted V–modules coincides with the category of
restricted modules for the Lie superalgebra Atw .
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Theorem (A, CMP 2007)

Assume that U is an irreducible V–module such that U admits the
following Z–gradation

U =
⊕
j∈Z

U j , V i .U j ⊂ U i+j .

Let F−1 be the vertex superalgebra associated to lattice Z
√
−1. Then

U ⊗ F−1 =
⊕
s∈Z
Ls(U), where Ls(U) :=

⊕
i∈Z

U i ⊗ F−s+i
−1

and for every s ∈ Z Ls(U) is an irreducible A
(1)
1 –module at the critical

level.
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Weyl vertex algebra

The Weyl vertex algebra W is generated by the fields

a(z) =
∑
n∈Z

a(n)z−n−1, a∗(z) =
∑
n∈Z

a∗(n)z−n,

whose components satisfy the commutation relations for
infinite-dimensional Weyl algebra

[a(n), a(m)] = [a∗(n), a∗(m)] = 0, [a(n), a∗(m)] = δn+m,0.
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Wakimoto modules

Assume that χ(z) ∈ C((z)).

On the vertex algebra W exists the structure of the A
(1)
1 –module at

the critical level defined by

e(z) = a(z),

h(z) = −2 : a∗(z)a(z) : −χ(z)

f (z) = − : a∗(z)2a(z) : −2∂za
∗(z)− a∗(z)χ(z).

This module is called the Wakimoto module and it is denoted by
W−χ(z).
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Theorem (D.A., CMP 2007, Contemp. Math. 2014)

The Wakimoto module W−χ is irreducible if and only if χ(z) satisfies one
of the following conditions:

(i) There is p ∈ Z>0, p ≥ 1 such that

χ(z) =
∞∑

n=−p
χ−nz

n−1 ∈ C((z)) and χp 6= 0.

(ii) χ(z) =
∑∞

n=0 χ−nz
n−1 ∈ C((z)) and χ0 ∈ {1} ∪ (C \ Z).

(iii) There is ` ∈ Z≥0 such that

χ(z) =
`+ 1

z
+
∞∑
n=1

χ−nz
n−1 ∈ C((z))

and S`(−χ) 6= 0, where S`(−χ) = S`(−χ−1,−χ−2, . . . ) is a Schur
polynomial.
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The structure of Wakimto modules

Theorem

Assume that χ ∈ C((z)) such that Wχ is reducible. Then

(1) Wχ is indecomposable.

(2) The maximal sl2–integrable submodule W int
χ is irreducible.

(3) Wχ/W
int
χ is irreducible.
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Theorem (D. Adamovic, N. Jing, K. Misra, 2014-2015)

Assume that U tw is an irreducible, restricted Atw–module, and FTi
−1

twisted F−1–module. Then U tw ⊗ FTi
−1 has the structure of irreducible

ŝl2[Θ]–module at the critical level.
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Construction of Atw–modules

Let FTi irreducible ΘF–twisted F–module.

FTi is an irreducible module the the twisted Clifford algebra CLtw

with generators Φ(r), r ∈ 1
2Z, and relations

{Φ(r),Φ(s)} = −(−1)2rδr+s,0; (r , s ∈ 1

2
Z)

Let χ ∈ C((z1/2)). The Atw–module FTi (χ) is uniquely determined
by

G (z) = ∂zΦ(z) + χ(z)Φ(z) =
∑
n∈ 1

2Z

G (n)z−n−1.
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Theorem (D. Adamovic, N. Jing, K. Misra, 2014-2015)

Assume that p ∈ 1
2Z>0 and that

χ(z) =
∞∑

k=−2p

χ
− k

2
z
k
2−1.

Then FTi (χ) is irreducible Atw–module if and only if one of the following
conditions hold:

p > 0 and χp 6= 0, (1)

p = 0 and χ0 ∈ (C \ 1
2Z) ∪ {1

2
}, (2)

p = 0 and χ0 −
1

2
= ` ∈ 1

2Z>0 and det(A(χ)) 6= 0 (3)
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A(χ) =



2S(−1) 2S(−2) · · · 2S(−2`)

`2 − (` − 1)2 2S(−1) 2S(−2) · · · 2S(−2` − 1)

0 `2 − (` − 2)2 2S(−1) · · · 2S(−2` − 2)

.

.

.

.
.
.

.
.
.

.
.
.

.

.

.

0 · · · 0 `2 − (` − 2` + 1)2 2S(−1)



and

S(z) =
1

2
(χ(1)(z))2 + ∂zχ

(1)(z)) =
∑
n∈Z

S(n)z−n−2

(here χ(1) is the integral part of χ).
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N=4 superconformal vertex algebra V N=4
c

V N=4
c is generated by the Virasoro field L, three primary fields of

conformal weight 1, J0, J+ and J− (even part) and four primary fields of

conformal weight 3
2 , G± and G

±
(odd part).

The remaining (non-vanishing) λ–brackets are

[J0
λ, J
±] = ±2J± [J0

λJ
0] =

c

3
l

[J+
λ J
−] = J0 + c

6λ [J0
λG
±] = ±G±

[J0
λG
±

] = ±G± [J+
λ G
−] = G+

[J−λ G
+] = G− [J+

λ G
−

] = −G+

[J−λ G
+

] = −G− [G±λ G
±

] = (T + 2λ)J±

[G±λ G
∓

] = L± 1

2
TJ0 ± λJ0 +

c

6
λ2

Let LN=4
c be its simple quotient.
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N=4 superconformal vertex algebra LN=4
c with c = −9

We shall present some results from D.Adamović, arXiv:1407.1527. (to
appear in Transformation Groups)

Theorem

(i) The simple affine vertex algebra Lk(sl2) with k = −3/2 is conformally
embedded into LN=4

c with c = −9.
(ii)

LN=4
c
∼= (M ⊗ F )int

where M ⊗ F is a maximal sl2–integrable submodule of the Weyl-Clifford
vertex algebra M ⊗ F .
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LN=4
c with c = −9 as an ŝl2–module

LN=4
c with c = −9 is completely reducible ŝl2–module and the

following decomposition holds:

LN=4
c
∼=
∞⊕

m=0

(m + 1)LA1 (−(
3

2
+ n)Λ0 + nΛ1).

LN=4
c is a completely reducible sl2 × ŝl2–modules. sl2 action is

obtained using screening operators for Wakimoto realization of

ŝl2–modules at level −3/2.
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The affine vertex algebra Lk(sl3) with k = −3/2.

Theorem

(i) The simple affine vertex algebra Lk(sl3) with k = −3/2 is realized as a
subalgebra of LN=4

c ⊗ F−1 with c = −9. In particular Lk(sl3) can be
realized as subalgebra of

M ⊗ F ⊗ F−1.

(ii) LN=4
c ⊗ F−1 is a completely reducible A

(1)
2 –module at level k = −3/2.
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On representation theory of LN=4
c with c = −9

LN=4
c has only one irreducible module in the category of strong

modules. Every Z>0–graded LN=4
c –module with finite-dimensional

weight spaces (with respect to L(0)) is semisimple (”Rationality in
the category of strong modules”)

LN=4
c has two irreducible module in the category O. There are

non-semisimple LN=4
c –modules from the category O.

LN=4
c has infinitely many irreducible modules in the category of

weight modules.

LN=4
c admits logarithmic modules on which L(0) does not act

semi-simply.
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Theorem (D.A, 2014)

Assume that U is an irreducible LN=4
c –module with c = −9 such that

U =
⊕

j∈Z U
j is Z–graded (in a suitable sense).

Let F−1 be the vertex superalgebra associated to lattice Z
√
−1. Then

U ⊗ F−1 =
⊕
s∈Z
Ls(U), where Ls(U) :=

⊕
i∈Z

U i ⊗ F−s+i
−1

and for every s ∈ Z Ls(U) is an irreducible A
(1)
2 –module at level −3/2.
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Connection with C2–cofinite vertex algebras appearing in
LCFT

Drinfeld-Sokolov reduction maps:

LN=4
c to doublet vertex algebra A(p) and even part (LN=4

c )even to
triplet vertex algebra W(p) with p = 2

(symplectic-fermion case)

Vacuum space of Lk(sl3) with k = −3/2 contains the vertex algebra
WA2 (p) with p = 2 (which is conjecturally C2–cofinite).
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Connection with C2–cofinite vertex algebras appearing in
LCFT:

Vacuum space of Lk(sl3) with k = −3/2 contains the vertex algebra
WA2 (p) with p = 2 (which is conjecturally C2–cofinite).

Affine vertex algebra Lk(sl2) for k + 2 = 1
p , p ≥ 2 can be

conformally embedded into the vertex algebra V(p) generated by
Lk(sl2) and 4 primary vectors τ±(p), τ

±
(p).

V(p) ∼= LN=4
c for p = 2.

Drinfeld-Sokolov reduction maps V(p) to the doublet vertex algebra
A(p) and even part (V(p))even to the triplet vertex algebra W(p).
(C2–cofiniteness and RT of these vertex algebras were obtain in a
work of D.A and A. Milas)
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The Vertex algebra WA2
(p): Definition

We consider the lattice

√
pA2 = Zγ1 + Zγ2, 〈γ1, γ1〉 = 〈γ2, γ2〉 = 2p, 〈γ1, γ2〉 = −p.

Let Mγ1,γ2 (1) be the s Heisenberg vertex subalgebra of V√pA2
generated

by the Heisenberg fields γ1(z) and γ2(z).

WA2 (p) = KerV√pA2
e
−γ1/p
0

⋂
KerV√pA2

e
−γ2/p
0 .

We also have its subalgebra:

W0
A2

(p) = KerMγ1,γ2
(1)e
−γ1/p
0

⋂
KerMγ1,γ2

(1)e
−γ2/p
0

WA2 (p) and W0
A2

(p) have vertex subalgebra isomorphic to the simple

W(2, 3)–algebra with central charge cp = 2− 24 (p−1)2

p .
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The Vertex algebra WA2
(p): Conjecture

(i) WA2 (p) is a C2–cofinite vertex algebra for p ≥ 2 and that it is a
completely reducible W(2, 3)× sl3–module.

(ii) WA2 (p) is strongly generated by W(2, 3) generators and by
sl3.e

−γ1−γ2 , so by 8 primary fields for the W(2, 3)–algebra.

Note that WA2 (p) is a generalization of the triplet vertex algebra
W(p) and W0

A2
(p) is a generalization of the singlet vertex

subalgebra of W(p).
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Relation with parafermionic vertex algebras for p = 2

(i) Let K (sl3, k) be the parafermion vertex subalgebra of Lk(sl3) (C.
Dong talk).

(iii) For k = −3/2 we have

K (sl3, k) =W0
A2

(p).
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General conjectures

Conjecture

Assume that Lk(g) is a simple affine vertex algebra of affine type and
k ∈ (Q \ Z≥0) is admissible. Then

The vacuum space

Ω(Lk(g)) = {v ∈ Lk(g) | h(n).v = 0 h ∈ h, n ≥ 1}

is extension of certain C2–cofinite, irrational vertex algebra.

Lk(g) admits logarithmic representations.

(1) Ω(Lk(sl2) ∼= W (2) for k = −1/2.

(2) Ω(Lk(sl2) ∼= A(3) for k = −4/3, where A(3) is SCE extension of
triplet vertex algebra W (3).

(3) Ω(Lk(sp2n)) for k = −1/2 is Z2–orbifold of symplectic fermions.
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Realization of simple W –algebras

Let F−p/2 denotes the generalized lattice vertex algebra associated
to the lattice Z( p

2ϕ) such that

〈ϕ,ϕ〉 = −2

p
.

Let R(p) by the subalgebra of V(p) ⊗ F−p/2 generated by
x = x(−1)1⊗ 1, x ∈ {e, f , h}, 1⊗ ϕ(−1)1 and

eα1,p :=
1√
2
τ+

(p) ⊗ e
p
2ϕ (4)

fα1,p :=
1√
2
τ−(p) ⊗ e−

p
2ϕ (5)

eα2,p :=
1√
2
τ+

(p) ⊗ e−
p
2ϕ (6)

fα2,p :=
1√
2
τ−(p) ⊗ e

p
2ϕ (7)
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Realization of simple W –algebras

R(2) ∼= LA2 (− 3
2 Λ0).

R(3) ∼=Wk(sl4, fθ) with k = −8/3.

(Conjecture) R(p) and V(p) have finitely many irreducible modules in
the category O.

R(p) and V(p) have infinitely many irreducible modules outside of
the category O and admit logarithmic modules.
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Thank you
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